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are travelling in the same direction. This can be seen in the following way: 
The propagation velocity of a forward-facing disturbance is u l + cl ; if 
U l + cl > D, the disturbance will overtake the shock. Equation (11) can be 
converted into a differential equation for the Hugoniot by assuming that 
s= S(p, V) and proceeding to eliminate dSjdp. The result is: 

where r= V(2p j2JT)vjOy' It has already been shown that -dpjdV> 
> (p-Po)j(Vo- V) in Fig. 2, and this with eq. (15) leads to the inequality: 

(16) ci j(D- u l )2-rl (VO - V 1)j2Vl > 1- (r]j2Vl )(VO - VI) . 

(17) 

provided the Rayleigh line is less steep than the tangent to the Hugoniot at 
(Pl' VI)' We say that in this case the flow behind the shock is 8ub8onic. 
A single shock connecting (Po, yo) and (PI' VI) is accordingly stable. If 
Dl> U] + 01 , then (PI' VI) is a point of instability and the possibility of 
forming a second shock exists [2]. 

Experimentally produced shock waves seldom exactly satisfy the require­
ments of steady flow assumed in deriving the jump conditions . The states 
connected by the shock transition may not be precisely uniform or the shock 
wave has not propagated far enough to become steady. However, the experi­
mental conditions may be very close to the theoretical assumptions, and it 
is quite likely that errors involved in applying the jump conditions to experi­
ments are less than those originating from other sources. Such errors may 
be significant if gradients in adjacent regions are comparable to those in the 
shock or if time has not been sufficient for the flow to become steady and 
the curvature of the Hugoniot is large. The resolution of this question is a 
constant source of concern to experimentalists and no satisfactory resolution 
has been made. BLAND [3] has considered the development of a step change 
in pressure for a viscous material and concludes that the shock profile is essen­
tially steady after travelling a distance of five shock thicknesses from the 
source. This is an interesting result. The difficulty in applying it is that, in 
general, the steady shock thickness is unknown. 

2. - Rarefactions and characteristics. 

Referring to our original model of a pressure on a half-space, we suppose 
that after being held at constant value PI while the shock was being formed, 
we then reduce the pressure to its ambient value Po. A forward-facing rare-
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faction is produced, and we seek an appropriate method for describing the 
propagation of this rarefaction. 

According to the discussion of Sect. 1, waves of rarefaction cannot be steady 
in the sense of eqs. (4)-(6) for normal materials; i.e., there are no solutions 
of the form e= e(x-Dt), etc., for constant D. We do know, however, that 
waves of infinitesimal amplitude satisfy the simple wave equation, and that 
solutions of this are in the form 

t(x - ct) + g(x + ct) . 

That is, they consist of forward-facing and backward-facing waves. For such 
infinitesimal waves we know that 

(18a) dp = ecdu 

for forward-facing waves and 

(18b) dp =-ecdu 

for backward-facing waves. Here c is the velocity with which these infini­
tesimal disturbances travel into material at rest. Equations (18) are in accord 
with the jump conditions if we apply them to waves of infinitesimal amplitude. 
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Fig. 3. - a) Continuous forward· facing rarefaction wave. The propagation velocity at 
each point is u + c. b) Representation of continuous rarefaction as sequence of small 

increments for which op = ec bu . 

If we consider our forward-facing rarefaction to be represented by a sequence 
of jumps, dp, to lower pressure, accompanied by a sequence of jumps, du, 
to smaller particle velocity, we can integrate eq. (18) to obtain the relation 
between p and u at any point in the rarefaction. This is illustrated in Fig. 3 


